
Tutorial 2 Part A: Vertex Transformation

Summary

Last tutorial you learnt how to draw a triangle on screen - now you’re going to learn how to transform
that triangle, using translation, scaling, and rotation matrices. You’ll also learn about projection
matrices, which can add a sense of depth to your rendered scenes.

New Concepts

Model matrices, Projection matrices, matrix translation, matrix rotation, matrix scaling, znear, zfar

Introduction

In the first tutorial, we rendered a triangle directly into clip space. That was OK for an introduction,
but is not very useful in the long run! In this lesson, you’ll learn how to use the vertex shader to
transform vertices from their local coordinate space into world space and finally clip space, via the
model and projection matrices.

Matrix Basics

The model and projection matrices, as well as the view and texture matrices you’ll be introduced
to later, are a type of transformation matrix - those which manipulate homogenous coordinates.
Homogenous coordinates have an extra cooordinate, w, which is usually set to a value of 1.0 - remember
how the vertex positions in the last tutorial had to be expanded out to 4 component vectors in the
vertex shader? That is to keep them homogenous - you’ll see how this extra dimension coordinate is
used later. These transformation matrices are 4 by 4 square matrices. Here’s how they’re normally
represented:

m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

The contain 16 real numbers, arranged into 4 rows and 4 columns. Generally these elements will

be stored as floats - graphics hardware is heavily geared towards performing floating point operations
on 4 component vectors, making them also ideal for computing with matrices.

1

Matrix Multiplication

In your graphical applications, you will often find yourself multiplying matrices together, both in your
C++ code, and your shaders. This is because it is multiplication, not addition, that concatenates the
effects of matrices together. For example, in this tutorial you will learn how to create matrices that
will translate vertex positions in space, and matrices that rotate them. In order to do a translation
AND a rotation on a vector, the two transformation matrices must be multiplied together. This is
done like so, with each value of the resulting matrix being the dot product of the relevent row of the
first matrix and the column of the second:

a0 a4 a8 a12
. . . .
. . . .
. . . .

 .

. . b8 .
. . b9 .
. . b10 .
. . b11 .

 =

. . c8 .
. . . .
. . . .
. . . .

 c8 =
[
a0b8 + a4b9 + a8b10 + a12b11

]

Commutativity

The method used to multiply matrices together means that the multiplication order is not commutative
- their ordering matters! For example, multiplying matrix a by matrix b is not the same as multiplying
matrix b by matrix a.

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 .

5 2 3 1
5 2 3 1
5 2 3 1
5 2 3 1

 =

. . c8 .
. . . .
. . . .
. . . .

 c8 =
[
0 · 3 + 4 · 3 + 8 · 3 + 12 · 3

]

5 2 3 1
5 2 3 1
5 2 3 1
5 2 3 1

 .

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 =

. . c8 .
. . . .
. . . .
. . . .

 c8 =
[
5 · 8 + 2 · 9 + 3 · 10 + 1 · 11

]

Identity Matrix

When working with transformation matrices, it may be desirable to have a matrix which does nothing
- maybe you want to just draw something as-is at the origin? To do so, the identity matrix is used.
It looks like this:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Multiplying any matrix m by an identity matrix i will result in a matrix identical to m. It’s worth
pointing out that in OpenGL, using only an identity matrix for your transformation would leave your
viewpoint looking down the negative z axis - so to move ’forward’, you will actually ’subtract’ !

Vertex Transformation

Vertices are transformed to their final clip space position in the vertex shader, by multiplying their
position vector by the matrix formed by multiplying the model, view, and projection matrices to-
gether. A vector is multiplied by a matrix in the following way (remember, we make our 3 component
vertex positions homogenous by adding a 1!):

m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

 ·

x
y
z
w

 =

xm0 + ym4 + zm8 + wm12

xm1 + ym5 + zm9 + wm13

xm2 + ym6 + zm10 + wm14

xm3 + ym7 + zm11 + wm15

2

The Model Matrix

The model matrix is used by the vertex shader to transform incoming vertices from their local space
(the coordinate values defined in arrays or loaded in from a file when creating a mesh) to world space
(the global coordinate system that determines where objects are in relation to each other in the scene).
All of the vertices for a mesh will be transformed by the same model matrix, and can contain any
combination of translation, rotation, scale, and shear information required to transform an object into
world space. By multiplying together transform matrices, a model matrix can be made to translate,
rotate, and scale your objects to whereever you want in world space.

Translation

A translation matrix has the following properties. It has a value of 1.0 down its diagonal, and has a
translation component down the right side - this is how much the vertex will be translated by on each
axis:

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

So, for example, we could translate the origin (0,0,0) of a mesh in local space to a world space position
of (10,10,10) using the following matrix:

1 0 0 10
0 1 0 10
0 0 1 10
0 0 0 1

 ·

0
0
0
1

 =

0 · 1 + 0 · 0 + 0 · 0 + 1 · 10
0 · 0 + 0 · 1 + 0 · 0 + 1 · 10
0 · 0 + 0 · 0 + 0 · 1 + 1 · 10
0 · 0 + 0 · 0 + 0 · 0 + 1 · 1

 =

10
10
10
1

Rotation

A rotation matrix rotates a vector around an axis - defined as a normalised 3 component vector with
components x, y, z. It is defined as follows:

x2(1 − c) + c xy(1 − c) − zs xz(1 − c) + ys 0
yx(1 − c) + zs y2(1 − c) + c yz(1 − c) − xs 0
xz(1 − c) − ys yz(1 − c) + xs z2(1 − c) + c 0

0 0 0 1

Where c is the cosine of the angle to rotate the vector by, and s is its sine.

Take this example: imagine we have a simple line, starting at the origin, and extending 10 units
down the x axis. If we wanted to rotate this line so it points down the z axis, we would need to rotate
the end point of the line -90 ◦ by the y-axis (0, 1, 0) - think of the rotation axis as a spindle through
the object by which it rotates.

02 + c 0 · 1 − 0s 0 · 0 + 1s 0
1 · 0 + 0s 12 + c 1 · 0 − 0s 0
0 · 0 − 1s 1 · 0 + 0s 02 + c 0

0 0 0 1

 ·

10
0
0
1

=

10 · (02 + c) 0 · (0 · 1 − 0s) 0 · (0 · 0 + 1s) 1 · (0)
10 · (1 · 0 + 0s) 0 · (12 + c) 0 · (1 · 0 − 0s) 1 · (0)
10 · (0 · 0 − 1s) 0 · (1 · 0 + 0s) 0 · (02 + c) 1 · (0)

10 · (0) 0 · (0) 0 · (0) 1 · (1)

 =

0
0
10
1

With c = cosine(-90) = 0, and s = sine(-90) = -1

3

Scaling

Multiplying a vector by a scaling matrix scales its values on a per-axis basis - meaning the result gets
closer to or further away from the origin. It is defined as follows:

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

Where x, y and z are the scaling factors for each axis - they can be negative! To build on the previous
example, imagine we now want our 10 unit line to be 100 units long. The line is now pointing along
the z axis, so the following scaling matrix will make the 10 unit line 100 units long.

1 0 0 0
0 1 0 0
0 0 10 0
0 0 0 1

 ·

0
0
10
1

 =

0 · 1 0 · 0 10 · 0 1 · 0
0 · 0 0 · 1 10 · 0 1 · 0
0 · 0 0 · 0 10 · 10 1 · 0
0 · 0 0 · 0 10 · 0 1 · 1

 =

0
0

100
1

The Projection Matrix

The projection matrix takes our world coordinates, and maps them into clip space, which maps ver-
tices to a space which stretches from -w to w one each axis, where w is the vertices own homogenous
w component. Any primitives past those values will either be culled (if the entire primitive is outside
of this range) or clipped (if part of the primitive will still be visible). This matrix is also used to
’project’ the 3D world we define via our transformation matrices and vertex coordinates onto a flat
plane - essentially, you can think of this flat plane is our 2D monitor screen. As part of this projection
process, it is possible to add a sense of perspective to the scene - The model and camera matrices have
no real mathematical workings that will make an object that is moving away from the camera get
smaller. There are a variety of ways of calculating the values for a projection matrix, but they can be
grouped into two basic types, the orthographic projection, and the perspective projection.

Near and Far Planes

We only have so much precision in a floating point value, so we can’t really have a view that truly
goes off into infinity. Instead, we must constrain what is seen on screen by using a near and a far
plane - nothing in front of the near plane is drawn, and nothing behind the far plane is drawn. The
greater the space between these two planes, the fewer bits of accuracy we have to play with in our
scene, so its good practise to limit the near and far planes to only be as large as needed. Technically,
the projection matrix defines six of these so-called ’clipping’ planes, as there’s a plane for the left,
right, top, and bottom sides of our scene, too. Together, these planes are known as a frustum - you’ll
do more with frustums later in the module.

Triangle a is in front of the far plane, and will not be seen, while triangle c actually intersects the
far plane - parts of triangle c will be culled!

4

Orthographic Projection

The simpler of the two projection matrix types is the orthographic matrix. As with drawing directly
into clip space, the orthographic projection is entirely parallel - there is no perspective added to the
scene. It does, however, allow the creation of a cuboid viewing area around the origin, using values to
determine the maximum viewing range per axis. These maximum viewing ranges are then ’squished’
to go from -1 to 1 by the matrix - the orthographic matrix doesn’t change a vertices’ w component,
so the resulting clip space goes from -1 to 1. The most common orthographic projection matrix is
defined as follows:

2
right−left 0 0 right+left

right−left
0 2

top−bottom 0 top+bottom
top−bottom

0 0 −2
far−near

far+near
far−near

0 0 0 1

So, instead of having a viewable space the ranges from -1 to 1 on each axis as with going directly to
clip space like we did in the previous tutorial, we have several options when using an orthographic
matrix. We could have a viewing area that goes from -100 to 100 on each axis, simply by using the
following values:

near = -100, far = 100, left = -100, right = 100, top = 100, bottom = -100

You should be able to see how using the following values would form an identity matrix, and thus
keeping clip space as the resulting coordinate space:

near = -1, far = 1, left = -1, right = 1, top = 1, bottom = -1

Or we could create a projection matrix that creates a space that matches that of the view area,
using these values:

near = -1, far = 1, left = 0, right = screen width, top = 0, bottom = screen height

This one is particularly useful as it allows pixel perfect placement of objects on screen - each unit
in space equals one pixel on screen. It is commonly used to draw the HUD, menus, and text in games,
either using the screen width and height directly, or by using ’virtual canvas’ - The orthographic
projection used in id Software’s Doom 3 always uses a width of 640 and a height of 480, no matter
what the actual screen resolution. This allows artists to define exactly whereabouts on screen the
health bar etc should be, in a screen resolution independent way.

Perspective Projection

In 3D games such as first person shooters, it is common to use a perspective projection. It is this
added perspective forshortening that makes objects get bigger and smaller as they get closer and
farther away from the viewpoint, and that makes parallel lines extending into the distance appear to
converge at their vanishing point. The perspective projection is commonly defined as follows:

f

aspect 0 0 0

0 f 0 0
0 0 zNear+zFar

zNear−zFar
2·zNear·zFar
zNear−zFar

0 0 −1 0

where f = cotangent (

fov

2
) , aspect = screen Width / screen Height, zNear and zFar are the near and

far planes, and fov is the vertical field of vision - how wide the angle of vision should be, in degrees.
The larger this value, the more objects to the side of the view normal will be visible. It was once
common for FPS games to have a field of vision of 45 ◦, but many modern console FPS games have
vertical fields of vision as low as 30 ◦ either way.

5

The perspective divide

You’ll notice how the perspective projection matrix has a value of -1 at m11. If you follow the math
that multiplies a vector by a matrix, you’ll see that this will put the negated z value of a input vector
in the output vector’s w value. This becomes important due to the perspective divide. After the vertex
shader completes, the x, y, and z components of the output vector are divided by the w component,
turning the ’clip space’ coordinates into their final ’normalised device coordinates’. It is this divide
which makes objects in the distance seem smaller - the further away something is, the larger the w
component will be, resulting in smaller x, y and z values post-divide, moving everything closer to
the centre of the screen the further away it is. You will also notice how we have a translation in the
z-axis of our matrix - this is due to a side effect of the perspective divide. If we divide the z axis by
w (which is just the z axis value, really), then z will always equal 1 after the perspective divide. This
is bad as it means we lose the ability to determine if one triangle is behind another. So, we add a
translate derived from the near and far planes, so that even once our translated z has been divided by
the ’untranslated’ w value, we still end up with a unique value to represent how far ’into’ the scene a
vertex is, and which still maps the z-axis from -1 to 1.

To show the effects of the perspective divide, here’s the result of performing the perspective di-
vide on some vectors, representing vertex positions. If we were to form a perspective matrix with a
zNear of 1, a zFar of 100, a vertical field of vision of 45.0, and an aspect ratio of 1.33 (for example,
from a screen resolution of 800 by 600), we’d get the following matrix:

M =

1.81 0 0 0

0 2.41 0 0
0 0 −1.02 −2.02
0 0 −1 0

Multiplying vectors that are 10 units to the right of the origin, and varying distances from the
viewpoint by this perspective matrix, we get the following:

A = M ·

10
0
1
1

 =

18.1

0
−3.0
−1

B = M ·

10
0
2
1

 =

18.1

0
−4.0
−2

C = M ·

10
0
99
1

 =

18.1

0
−103.0
−99

D = M ·

10
0

100
1

 =

18.1

0
−104.0
−100

After the perspective divide step, we’d get the following vectors:

A′ =

 −18.1
0

3.04040

B′ =

 −9.0
0

2.03030

C ′ =

−0.18289
0

1.04060

D′ =

−0.1810
0

1.04040

If you look at the four post-perspective divide vectors, you’ll see that their x axis position converge
towards 0 the further away they are - it is this that makes geometry smaller in the distance, and what
makes the ’vanishing point’ effect on parallel lines. You should also see that the z axis is also effected
- the effects of the perspective divide are non-linear, so the difference in z axis between vectors A’
and B’ is far greater than the difference between C’ and D’, something which will become important
later, when looking at depth buffers.

6

Example program

The example program for this Tutorial will allow us to render 3 triangles in either perspective or
orthographic mode. These triangles can then be translated, rotated, and scaled using the model
matrix, controlled by the keyboard. Previous versions of OpenGL provided in-built support for the
manipulation of the projection and model matrices via its matrix stack - but OpenGL 3 does away
with that, forcing you to handle all matrix-based functionality yourself. Instead, we’ll be using the
Matrix4 nclgl class to handle our matrix needs. As matrices are so intrinsic to the correct rendering
of graphical scenes, the OGLRenderer class that these tutorials inherit from has model and projection
matrices as member variables, along with a view matrix, which you’ll be using in the next tutorial.
In your Tutorial2 solution, create a Renderer class that inherits from OGLRenderer, and a text file
called Tutorial2.cpp. We’ll be reusing last tutorial’s fragment shader, but writing a new vertex shader,
so create a text file called MatrixVertex.glsl in the Shaders folder.

Renderer header file

Our Renderer class for this Tutorial is pretty similar to that of Tutorial 1. This time, we have 3
new protected member variables - these will control the scale, rotation, and position of our rendered
triangles. We also have public accessors for each of these, that will be used in our main loop - we’ll
define these in the header file, as they’re so simple. Finally, there’s two additional public functions
that will be used to switch between perspective and orthographic projections.

1 #pragma once

2

3 #include "./ nclgl/OGLRenderer.h"

4

5 class Renderer : public OGLRenderer {

6 public:

7 Renderer(Window &parent);

8 virtual ~Renderer(void);

9

10 virtual void RenderScene ();

11

12 void SwitchToPerspective ();

13 void SwitchToOrthographic ();

14

15 inline void SetScale(float s) { scale = s;}

16 inline void SetRotation(float r) { rotation = r;}

17 inline void SetPosition(Vector3 p) { position = p;}

18

19 protected:

20 Mesh* triangle;

21

22 float scale;

23 float rotation;

24 Vector3 position;

25 };

Renderer.h

7

Renderer Class file

The constructor and destructor for the Renderer class in this tutorial are similar to Tutorial 1 -
but note the new vertex shader on line 6, and the call to our SwitchToOrthographic function on line 15.

1 #include "Renderer.h"

2

3 Renderer :: Renderer(Window &parent) : OGLRenderer(parent) {

4 triangle = Mesh:: GenerateTriangle ();

5

6 currentShader = new Shader(SHADERDIR"MatrixVertex.glsl",

7 SHADERDIR"colourFragment.glsl");

8

9 if(! currentShader ->LinkProgram ()) {

10 return;

11 }

12

13 init = true;

14

15 SwitchToOrthographic ();

16 }

17

18 Renderer ::~ Renderer(void) {

19 delete triangle;

20 }

Renderer.cpp

The next two functions in this Tutorial switch the projection matrix between a perspective projec-
tion, and an orthographic projection, using the nclgl Matrix4 class functions Perspective and Ortho-
graphic, which simply create the matrices described earlier. Perspective takes 4 parameters - a near
and far z, an aspect ratio (remember how aspect is used in the perspective matrix formation?) and a
horizontal field of vision.

21 void Renderer :: SwitchToPerspective () {

22 projMatrix = Matrix4 :: Perspective (1.0f ,10000.0f,

23 (float)width / (float)height , 45.0f);

24 }

Renderer.cpp

Orthographic takes 6 parameters - one for each axis and direction, in the order back, front, right, left,
top, bottom.

25 void Renderer :: SwitchToOrthographic () {

26 projMatrix = Matrix4 :: Orthographic (-1.0f ,10000.0f,

27 width / 2.0f, -width / 2.0f,height / 2.0f, -height / 2.0f);

28 }

Renderer.cpp

Both matrix projections have a far plane value of 10,000 - enough for a large scene. Perspective
has a near plane value of 1.0 - this is a fairly common default. Due to the way the depth buffer
values are calculated, the closer a near plane value is to 0, the lower the depth buffer precision is. The
orthographic projection, however, has -1 as its near plane. Why? Orthographic projections are often
used to draw text and HUD information on screen, and it is intuitive for such elements to have a depth
of 0. So, to ensure such items are drawn, a negative near plane value is often used with orthographic
projections.

8

Finally, we have the RenderScene function of our tutorial’s Renderer. Lines 34 and 37 demonstrate
how to update a matrix uniform variable of a shader. The glUniformMatrix4fv function calls are a
bit long winded - the first parameter is the variable name, the second is how many matrices to update
(it is possible to have an array of matrices!), the third is whether the matrix should be transposed,
and the fourth is a pointer to the matrix data. Beginning on line 40, we render three triangles in the
world, progressively further away from the origin. Line 46 shows how the model matrix for an object
can be formed by multiplying several transformation matrices together, in this case, a translation,
rotation and a scale, all of which are controlled by the local variables of the Renderer class. Line 50
then sends this concatenated model matrix to the shader, and 53 draws the current triangle, at the
position determined by the model matrix.

29 void Renderer :: RenderScene () {

30 glClear(GL_COLOR_BUFFER_BIT);

31

32 glUseProgram(currentShader ->GetProgram ());

33

34 glUniformMatrix4fv(glGetUniformLocation(currentShader ->GetProgram ()

35 , "projMatrix"), 1,false , (float *)& projMatrix);

36

37 glUniformMatrix4fv(glGetUniformLocation(currentShader ->GetProgram ()

38 , "viewMatrix"), 1,false , (float *)& viewMatrix);

39

40 for(int i = 0; i < 3; ++i) {

41 Vector3 tempPos = position;

42 tempPos.z += (i*500.0f);

43 tempPos.x -= (i*100.0f);

44 tempPos.y -= (i*100.0f);

45

46 modelMatrix = Matrix4 :: Translation(tempPos) *

47 Matrix4 :: Rotation(rotation ,Vector3 (0,1,0)) *

48 Matrix4 :: Scale(Vector3(scale ,scale ,scale));

49

50 glUniformMatrix4fv(glGetUniformLocation(

51 currentShader ->GetProgram (), "modelMatrix"), 1,false ,

52 (float *)& modelMatrix);

53 triangle ->Draw ();

54 }

55

56 glUseProgram (0);

57

58 SwapBuffers ();

59 }

Renderer.cpp

Main file

Our main function is quite long this time, but still pretty simple! We want to be able to rotate, scale
and translate our triangles, so we need key checks for each of these. The + and - keys control the
scale local variable, I, J, K, L, O and P control the position local variable, and finally the left and
right arrow keys control the rotation local variable. These are then sent to the Renderer each frame
by the accessor functions we declared earlier, and finally the RenderScene function is called. Note
how the position z -axis is set to -1500.0f - we draw 3 triangles, each 500 units closer than the last,
so the final triangle will have a z-axis position of 0.0f.

9

1 #pragma comment(lib , "nclgl.lib")

2

3 #include "./ nclgl/window.h"

4 #include "Renderer.h"

5

6 int main() {

7 Window w("Vertex Transformation!" ,800,600, false);

8 if(!w.HasInitialised ()) {

9 return -1;

10 }

11

12 Renderer renderer(w);

13 if(! renderer.HasInitialised ()) {

14 return -1;

15 }

16

17 float scale = 100.0f;

18 float rotation = 0.0f;

19 Vector3 position(0, 0, -1500.0f);

20

21 while(w.UpdateWindow () && !keyboard ->KeyDown(KEYBOARD_ESCAPE)){

22 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_1))

23 renderer.SwitchToOrthographic ();

24 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_2))

25 renderer.SwitchToPerspective ();

26

27 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_PLUS)) ++ scale;

28 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_MINUS)) --scale;

29

30 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_LEFT)) ++ rotation;

31 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_RIGHT)) --rotation;

32

33 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_K))

34 position.y -= 1.0f;

35 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_I))

36 position.y += 1.0f;

37

38 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_J))

39 position.x -= 1.0f;

40 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_L))

41 position.x += 1.0f;

42

43 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_O))

44 position.z -= 1.0f;

45 if(Window :: GetKeyboard()->KeyDown(KEYBOARD_P))

46 position.z += 1.0f;

47

48 renderer.SetRotation(rotation);

49 renderer.SetScale(scale);

50 renderer.SetPosition(position);

51 renderer.RenderScene ();

52 }

53

54 return 0;

55 }

Tutorial2.cpp

10

Vertex Shader

Our vertex shader is similar to last tutorial, but with 3 new uniform variables, one for each of our
matrices. To transform the incoming vertices to the correct position, we must multiply them by a
combined ’Model View Projection’ matrix. Remember, matrix multiplication is not commutative, so
the order in which we multiply matrices together matters - in this case we multiply them in reverse
order to create the correct matrix. The viewMatrix variable will be set to an identity matrix, and so
will not change the mvp variable. You’ll see how to use this variable to transform vertices into a space
local to a camera viewpoint in the next tutorial.

1 #version 150 core

2

3 uniform mat4 modelMatrix;

4 uniform mat4 viewMatrix;

5 uniform mat4 projMatrix;

6

7 in vec3 position;

8 in vec4 colour;

9

10 out Vertex {

11 vec4 colour;

12 } OUT;

13

14 void main(void) {

15 mat4 mvp = projMatrix * viewMatrix * modelMatrix;

16 gl_Position = mvp * vec4(position , 1.0);

17 OUT.colour = colour;

18 }

MatrixVertex.glsl

Running the Program

When running the program, you should be met with a scene of 3 triangles, in an orthographic projec-
tion. You’ll notice that even though our for RenderScene for loop brings each triangle 500.0f units
closer to the ’camera’, each triangle is the same size. Contrast this with the perspective projection
of the scene you see when you press the 2 key, where the triangles further away become smaller. We
can also translate our triangles using I,J,K and L. Again, note how orthographic and perspective
projections have different results - no matter how far we move our triangles away from the screen,
they stay the same size, but in a perspective projection they get smaller and smaller - in both cases
they will eventually disappear, as they hit the far z distance.

11

Tutorial Summary

With the completion of this tutorial, you should know how to transform your meshes, by translating
them in world coordinates, as well as rotating and scaling them. You should also now know that the
order in which matrices are multiplied together is important. Finally, you should have an idea of how
to apply a projection matrix to your scene. Orthographic projections are useful for 2D games, and
for the drawing of in-game HUDs, while perspective projections are more useful for 3D games. As
the demo program shows, it is easy to use both orthographic and perspective projections in a single
application, so you should be starting to see how games can use both to render their scenes. Next
tutorial, we’ll take a look at the third transformation matrix - the view matrix. This will allow us to
translate and rotate our viewpoint around our scene, independently of our model matrix.

Further Work

1) What happens if you change the order of the matrix multiplications in the RenderScene function
on line 43? Why is this?

2) When drawing in-game HUDs, it is useful to be able to target the screen directly, so that model
space translations are equal to pixels on screen. What projection matrix will perform this?

2) Some games use the field of vision parameter of a perspective matrix to create visual effects -
think of the narrowing of the fov when using the iron sights in an FPS game, or the fish-eye lens effect
in Aliens vs. Predator. Add a controllable fov member variable to the Renderer class, in a similar
manner to the triangle rotation member variable.

12

